
Criterion C: Development

Python libraries used

A detailed description of each library is found in Criterion B

Python Library Version

Beautifulsoup4 4.12.2

Pandas 2.1.1

Podcastparser 0.6.10

Urllib3 2.0.5

KeyBert 0.7.0

Db-sqlite3 0.0.1

Numpy 1.26.0

Gensim 4.3.2

Python-math 0.0.1

Requests 2.31.0

Flask 2.3.3

NLTK 3.8.1

Wordnet 0.0.1b2

List of techniques

Program Section Complex Techniques

Use of API connection to validate
inputs

● Loops
● Data structures
● HTTP request
● Web scraping
● Error handling
● Dictionary update

Use of NLTK lemmatisation and
stopword removal to validate input

● Pickle file opening
● Stopword removal
● Lemmatisation
● List comprehension by filtering out

stopwords

SQLite database creation, data
query, and storage

● Database Connection
● Database Table Creation
● Data retrieval
● Loops
● Data dictionary
● Pandas Dataframe
● Storing data in a data frame

Get podcast homepage URLs for
each user input

● HTTP request
● Web scraping
● String manipulation
● 2D lists
● Nested loops
● Conditional logic
● Data extraction
● Data filtering

Get podcast homepage RSS feed
URL

● Loop
● HTTP request
● Data parsing with BeautifulSoup
● Exception handling with ‘try’ and ‘except’
● Dictionary for data storage
● Data extraction from HTML

Generate keywords from descriptions
of each RSS feed episode

● RSS parsing with ‘podcastparser’ library
● HTTP request with ‘urllib’ library

● Dictionary for data storage
● Loop
● Keyword Extraction with KeyBERT

Core NLP model: Word2Vector ● Error handling
● Nested Loop
● Word embedding (Word2Vec)
● Numpy Operations
● Centroid Calculations
● Euclidean Distance calculation
● Min-Max Normalisation function
● Use of Gensim vector similarity function

Use of Flask to render HTML
templates

● Flask application setup
● Use of decorator
● Setting a secret key

Fetch user input ● Flask request.form()
● Flask session
● Decorator for handling POST request

Use of CSS and HTML templates ● Use of @import rule
● CSS selector
● Font styling
● Separation of concerns

Data table creation and visualisation ● List comprehension
● Loop
● Dictionary
● Data transformation
● Use of external libraries in rendering

interactive tables
● Defining parameters for table
● Custom search functionality

Data table query ● DOM (document object model) selection
● Event handling
● Redirection
● POST request
● JSON serialisation
● Promise handling

word cloud creation ● Jinja2
● External Library

● JSON serialisation and deserialisation

Input autocomplete function ● jQuery Document ready function
● Jinja2
● jQuery UI Autocomplete widget

SC: success criteria

Use of API connection to validate inputs

Using request and web-scraping tools that search through classes [1], this function validates
if user input returns podcast results in Google podcast API. [SC: 1) d) iii) (2)] is achieved
by using sessions [2]as a flag to check if no podcast results are returned. This is more
efficient as all the processing is done on an external server.

Use of NLTK lemmatization and stopword removal to validate input

[SC: 1) d) iii) (1)] is achieved by defining a list of stopwords.

While Regex handles common cases when converting plural words to their singular form,
exceptions like 'bless' pose challenges. Using NLTK lemmatization [3]processes words to
their singular form by interpreting the meaning in context, validating inputs more accurately
and achieving [SC: 1) d) iii) (1)].

[SC: 1) d) iii) (1)] is met by filtering out stopwords after lemmatization.

SQLite database creation, data query, and storage
Database creation

Data query

KeyBERT() language model [4] causes extended processing time for each input. To optimise
user experience, saving inputs and their keywords in a database eliminates the need for
processing user input, thus achieving [SC: 1) d) i)].

Storage

A data dictionary is often used for a data frame. Surpassing the manual SQL insertion
approach, pandas .to_sql() method efficiently saves the data frame to a SQLite database [5],
hence achieving [SC: 1) d) i)].

Get podcast homepage URLs for each user input

[SC: 2) b)]

BeautifulSoup's .find_all() [6] finds podcast items in the soup content, identifying <a>
elements with a 'listitem' role attribute, returning a list.

[SC: 2) c)] is achieved from the above webscraping method.

Retrieval of the podcast homepage URLs uses the same techniques.

Converting a list to a set is simple, readable and has an average time complexity of O(n) [7]

whilst automatically eliminating redundant elements. [SC: 2) d)]

Get podcast homepage RSS feed URL

[SC: 2) e)] is achieved by first defining meta-data used for the POST request which returns
the RSS feed for each podcast homepage. [8]

Finally, BeautifulSoup library parses the RSS feed to identify important elements like the
RSS feed URL.

Generate keywords from descriptions of each RSS feed episode

[SC: 2) f)] is achieved by using the podcastparser library to parse each RSS feed URL to
concatenate the descriptions of each episode together. [9]

[SC: 2) f) ii)] & [SC: 3) a)] is achieved using KeyBERT which extracts podcast keywords
from descriptions from each homepage using the .extract_keywords() method in NLP.

Core NLP model: Word2Vector

[SC: 3) b)] is achieved using the Word2Vec model from the Stanford GloVe project. [10]

Using a pre-existing unsupervised learning algorithm from a large corpus to create word
vectors is much more efficient than training my own, optimising the backend functionality of
my program.

To achieve [SC: 3) b) ii)], the centroid is calculated from the mean of all the keyword vector
pools.Calculating the mean distance of each keyword vector pool to the centroid, the
function can determine the degree of input relevance.

Relevance is determined by min-max normalisation, ensuring a consistent scale expressed
as a percentage.

Our hypothesis test confirmed the correlation between centroid distance and input relevance
and thus confidence in recommendation. Therefore, using the Gensim .similar_by_vector
function [11], the closest recommended keyword can be determined from euclidean distance
to the centroid vector, thus achieving [SC: 3) b) iii)].

Use of Flask to render HTML templates

render_template() function passes keyword arguments to HTML template to generate
dynamic content, achieving [SC: 5) a)]. This method also follows separation of concerns
such that application logic in python is separated from HTML presentation, enhancing
maintainability and readability.

Fetch user input

[SC: 1) c) d)] is achieved using Flask [12] to define routes where input data can be validated
using check_user_input() function.

Use of CSS and HTML templates

main.css specifies features like background and font colours. [13]

By using external CSS files linked in the <head> section, HTML content can be separated
from CSS styles; if I alter the style I won’t alter the content of the webpage, achieving [SC:
1) a) b)]. This type of modularity is also implemented by separating each HTML page and
connecting them via Flask as shown in main.py. Use of separated functions means that they
can be accessed from different python files, extending usage for different applications.

Data table creation and visualisation

To achieve [SC: 5) b)], data from database is first converted into a dictionary.

Grid.js library creates interactive tables with specific parameters: [14]

An interactive gridjs table is created with defined columns and corresponding data.

Lastly, further functionalities like searching and sorting are granted using Grid.js library, thus
conveniently rendering professional data tables, achieving [SC: 5) b)]. The external library
greatly simplifies creating interactive tables. The configurability also allows the developer to
personalise the appearance and table behaviour to suit project aim.

Data table query

Firstly, to achieve [SC: 4) b)], the programme must ‘listen’ for user input.

Next, user_query stores the query element for subsequent POST requests.

The navigate() {....}.then(navigate), employs asynchronous programming that initiates a
network request before further operations, enhancing readability. If the POST request fails, it
can be debugged separately from the navigation function.

Lastly, [SC: 4) b)] is achieved by fetching the user input from the POST request and
mapping it to its keywords from the database.

Using sessions with specific keys in Flask allows storage and access across HTTP
requests, so data can be accessed in different Flask routes, promoting organisation and
continuity between pages and functions.

word cloud creation

To achieve [SC: 5) a)], the session is a flag that determines if 'embedding_projector.html' is
called from this route as the HTML document renders different content based on the
originating route.

Thus, Jinja2 [15] is used to display the flashed data in the HTML document.

To achieve either [SC: 5) a)] or [SC: 5) c)], TagCloud Js library [16] takes a list of words and
displays an animated word cloud, allowing users to quickly grasp the important keywords
relevant to their search input.

Input autocomplete function

To achieve [SC: 1) d) ii)], the first script loads the jQuery library [17]making it easy to
manipulate HTML document objects. The second script is used to create an interactive
autocomplete box.

Use of $ defines a function in javascript that works with DOM (document object model)
elements. .autocomplete() calls the variable availableTags1 and, using Jinja2, flashes the
input records corresponding to the user input defined by the identifier “tags1”, thus achieving
[SC: 1) d) ii)].

Word count: 972

Works Cited

DB Browser for SQLite, https://sqlitebrowser.org/. Accessed 1 July 2023.

Jinja — Jinja Documentation (3.1.x), https://jinja.palletsprojects.com/en/3.1.x/.

Accessed 15 November 2023.

Breuss, Martin. “Beautiful Soup: Build a Web Scraper With Python – Real Python.”

Real Python, https://realpython.com/beautiful-soup-web-scraper-python/.

Accessed 5 July 2023.

“[Flask教學] Flask Session 使用方法和介紹.” Max行銷誌, 23 September 2020,

https://www.maxlist.xyz/2019/06/29/flask-session/. Accessed 10 June 2023.

“GloVe: Global Vectors for Word Representation.” Stanford NLP Group,

https://nlp.stanford.edu/projects/glove/. Accessed 20 July 2023.

Grootendorst, Maarten. “KeyBERT - KeyBERT.” Maarten Grootendorst,

https://maartengr.github.io/KeyBERT/api/keybert.html#keybert._model.Key

BERT.extract_embeddings. Accessed 25 June 2023.

“How to style buttons with CSS.” W3docs,

https://www.w3docs.com/snippets/css/how-to-style-buttons-with-css.html.

Accessed 10 September 2023.

Jain, Sandeep. “NLP Gensim Tutorial - Complete Guide For Beginners.”

GeeksforGeeks, 7 November 2022,

https://www.geeksforgeeks.org/nlp-gensim-tutorial-complete-guide-for-begin

ners/. Accessed 2 August 2023.

Jain, Sandeep. “Python | Lemmatization with NLTK.” GeeksforGeeks, 3 January

2023, https://www.geeksforgeeks.org/python-lemmatization-with-nltk/.

Accessed 18 June 2023.

“jQuery Tutorial.” W3Schools, https://www.w3schools.com/jquery/default.asp.

Accessed 15 December 2023.

m, jose. “✍️.” YouTube, 30 August 2022,

https://github.com/miguelgrinberg/flask-gridjs/blob/main/templates/ajax_tabl

e.html. Accessed 10 November 2023.

Min, Cong. “Animated text sphere in JavaScript using TagCloud.js.” DEV

Community, 2 August 2021,

https://dev.to/asmitbm/animated-text-sphere-in-javascript-using-tagcloud-js-

1p72. Accessed 4 December 2023.

Perl, Thomas. “podcastparser · PyPI.” PyPI, https://pypi.org/project/podcastparser/.

Accessed 15 July 2023.

“Python網頁設計：Flask使用筆記(二)- 搭配HTML和CSS.” Yanwei Liu, 5 April 2019,

https://yanwei-liu.medium.com/python%E7%B6%B2%E9%A0%81%E8%A8

%AD%E8%A8%88-flask%E4%BD%BF%E7%94%A8%E7%AD%86%E8%

A8%98-%E4%BA%8C-89549f4986de. Accessed 10 August 2023.

“Python Requests post Method.” W3Schools,

https://www.w3schools.com/python/ref_requests_post.asp. Accessed 4

June 2023.

“Python Requests post Method.” W3Schools,

https://www.w3schools.com/python/ref_requests_post.asp. Accessed 10

July 2023.

“Python set() Function.” W3Schools,

https://www.w3schools.com/python/ref_func_set.asp. Accessed 7 July

2023.

