Criterion C: Development

Python libraries used

A detailed description of each library is found in Criterion B

Python Library Version
Beautifulsoup4 4.12.2
Pandas 211
Podcastparser 0.6.10
Urllib3 2.0.5
KeyBert 0.7.0
Db-sqlite3 0.0.1
Numpy 1.26.0
Gensim 4.3.2
Python-math 0.0.1
Requests 2.31.0
Flask 233
NLTK 3.8.1
Wordnet 0.0.1b2

List of techniques

Program Section

Complex Techniques

Use of API connection to validate
inputs

Loops

Data structures
HTTP request
Web scraping
Error handling
Dictionary update

Use of NLTK lemmatisation and
stopword removal to validate input

Pickle file opening

Stopword removal

Lemmatisation

List comprehension by filtering out
stopwords

SQLite database creation, data
query, and storage

Database Connection
Database Table Creation
Data retrieval

Loops

Data dictionary

Pandas Dataframe

Storing data in a data frame

Get podcast homepage URLs for
each user input

HTTP request
Web scraping
String manipulation
2D lists

Nested loops
Conditional logic
Data extraction
Data filtering

Get podcast homepage RSS feed
URL

Loop

HTTP request

Data parsing with BeautifulSoup
Exception handling with ‘try’ and ‘except’
Dictionary for data storage

Data extraction from HTML

Generate keywords from descriptions
of each RSS feed episode

RSS parsing with ‘podcastparser’ library
HTTP request with ‘urllib’ library

Dictionary for data storage
Loop
Keyword Extraction with KeyBERT

Core NLP model: Word2Vector

Error handling

Nested Loop

Word embedding (Word2Vec)

Numpy Operations

Centroid Calculations

Euclidean Distance calculation
Min-Max Normalisation function

Use of Gensim vector similarity function

Use of Flask to render HTML
templates

Flask application setup
Use of decorator
Setting a secret key

Fetch user input

Flask request.form()
Flask session
Decorator for handling POST request

Use of CSS and HTML templates

Use of @import rule
CSS selector

Font styling

Separation of concerns

Data table creation and visualisation

List comprehension

Loop

Dictionary

Data transformation

Use of external libraries in rendering
interactive tables

Defining parameters for table
Custom search functionality

Data table query

DOM (document object model) selection
Event handling

Redirection

POST request

JSON serialisation

Promise handling

word cloud creation

Jinja2
External Library

e JSON serialisation and deserialisation

Input autocomplete function e jQuery Document ready function
Jinja2
e jQuery Ul Autocomplete widget

SC: success criteria

Use of APl connection to validate inputs

Looping through Sending request to google
each user input podcast AP| and using BS4 to
interpret received data

check_user_input(input1,input2,inputs):
input [input1,input2,input?]

user_input:

up(resp.text,
p-find_all(

1s redirect, error msg

Using class property of webpage, |
can check if podcast content is found.
If the class contains a message, then
no podcast is found for user input.

Loops through dictionary to check if content of
user input key contains 1 corresponding to an
error whereby no podcast is found for that
specific input

Using request and web-scraping tools that search through classes "), this function validates
if user input returns podcast results in Google podcast API. [SC: 1) d) iii) (2)] is achieved
by using sessions @ as a flag to check if no podcast results are returned. This is more
efficient as all the processing is done on an external server.

Use of NLTK lemmatization and stopword removal to validate input

st of trivial words

= get_stop_words()

handle stores
with statement ensures open() function || ‘rb’ specifies file object
that file opened is closed | | opens the file how file is read: || returned by
after use for reading (read binary) open()

def get/stop_words():
with open('data/Stopwords.pickle’, 'rb') as handle:

stopwords = pickle.load(handle)

return stopwords

Jload() used to
deserialise the file
object in handle

[SC: 1) d)iii) (1)] is achieved by defining a list of stopwords.

WordNetLemmatizer() is
imported from NLTK library

lemmatizer = WordNetLemmatizer()

singular_words = [lemmatizer.lemmatize(word.strip()) for word in word_list]

. . .strip() removes any
W°":tNZt;-em",jli¥zKelfé’ N leading and trailing Loops through
imported from Pray || spaces in the word each user input

in word_list

While Regex handles common cases when converting plural words to their singular form,
exceptions like 'bless' pose challenges. Using NLTK lemmatization ! processes words to
their singular form by interpreting the meaning in context, validating inputs more accurately
and achieving [SC: 1) d) iii) (1)]

words

word for word in singular_words if word.lower()

trivial words]

[SC: 1) d)iii) (1)] is met by filtering out stopwords after lemmatization.

SQLite database creation, data query, and storage

Database creation

Sqlite3.connect connects to
database in current working
directory. If it doesn’t exist, it

implicitly creates the database.

calling conn.cursor
allows me to execute
SQL statements such as
querying and creating
tables.

onn = sqlite3.connect('KE
ursor = conn.cursor()

ursor.execute('CR
onn.commit()

s Using the CREATE TABLE statement by calling the
.commit() is P)
able to execute .execute() function, | am able to create a new table
called KEYWORD containing user inputs and keywords
the above
from relevant podcasts.
statements.
Data query

pd.read_sql() reads the data from SQL database
into a pandas dataframe named df_result using
SQL query statement SELECT to get user_input
and keywords from KEYWORD table.

Establishes connection
to the database

df_result = pd.read_sql('SELECT

'

for i in range(df_result['user_input'].count()):
if(df_result['user_ user_input):

return(user_input,df_resuli["k

Looping through
number of user inputs
in the dataframe

Return the user input
and its relevant
keywords stored in
the dataframe by
accessing it from

If the user inputs within dataframe
match with the one entered by
user in current session then
keywords can just be fetched from
dataframe

KeyBERT() language model I causes extended processing time for each input. To optimise
user experience, saving inputs and their keywords in a database eliminates the need for
processing user input, thus achieving [SC: 1) d) i)].

Storage

Creating a data dictionary
with keys ‘user_input’ and Using pd.DataFrame()
‘keywords’ with their function from Pandas
associated values. Library to convert data
into structured format

d = {'user_input': [user/input], ‘'keywords':[total_keywords_string]}

df_result = pd.DataFrame(data=d)
df_result.to_sql('KEYWORD', conn, if_exists="append', index=False)

.to_sql() method Take parameters such Parameter taken Parameter taken that
stores the data frame as ‘KEYWORD' table, that specifies to specifies index of
in a SQLite database. the database append the data if dataframe won'’t be
connection ‘conn’ table already included when saving
exists. data in database

A data dictionary is often used for a data frame. Surpassing the manual SQL insertion
approach, pandas .to_sql() method efficiently saves the data frame to a SQLite database [,
hence achieving [SC: 1) d) i)].

Get podcast homepage URLs for each user input

requests.get() used concatenate strings
to make an HTTP to build URL
GET request to the

google podcast URL

base_url = 'https://podcasts.google.com/search/’
search_url = basé_url + user_input
resp = requests.get(search_url)

soup = BeautifulSoup(resp.text, 'lx

5+ =

BeautifulSoup library uses the ‘Ixml’ parser to
parse HTML content of webpage data
requested by searching through elements with
particular attributes

[SC: 2) b)]

results = soup.find_all('a’', {'role': 'listitem'})

BeautifulSoup's .find_all() ® finds podcast items in the soup content, identifying <a>
elements with a 'listitem' role attribute, returning a list.

for result dnresutts: | |

I podcast_url_part = result.get('href')[2:] #get the links of each podcast item

[SC: 2) c)] is achieved from the above webscraping method.

Retrieval of the podcast homepage URLs uses the same techniques.

new_homepage_urls = list(set(homepage_urls))

Converting a list to a set is simple, readable and has an average time complexity of O(n) ["!
whilst automatically eliminating redundant elements. [SC: 2) d)]

Get podcast homepage RSS feed URL

Loops through
homepage URLs

r pc_url in new_homepage_urls:
google podcast_url = pc_url

url_getrssfeed = 'https

headers = {'user

Used to mimic a Windows 10 machine

. using a chrome browser, so that request
Dictionary used to store is treated as if it were made from web
Ao T request headers Used to identify client making browser

or metho request containing info about its

browser and operating system

[SC: 2) e)] is achieved by first defining meta-data used for the POST request which returns
the RSS feed for each podcast homepage. ®

Data parameter headers parameter
Requests method contains dictionary includes custom
sends a HTTP POST Reqt_.!est sent used to send data as headers to mimic a
request to this URL part of POST request browser agent

C podca O SS uri

r = requests.post(url_getrssfeed, data={"url":google_podcast_url}, headers=headers)

soup_getrssafterpost = BeautifulSoup(r.text, 'lxml')
try:
| rss_url = soup_getrssafterpost.find('div', {'class': 'mt-4'}).a['href']
except:
print(f"Cannot retrieve rss feed from\ this {google_podcast_url}")

continue

‘try’ and ‘except’

block used in Tries to find <div> element with class attribute set to ‘mt-4".
error handling Then, retrieves the URL from this corresponding to the RSS
feed URL

Finally, BeautifulSoup library parses the RSS feed to identify important elements like the
RSS feed URL.

Generate keywords from descriptions of each RSS feed episode

podcastparser library parses
the contents of the RSS URL
and retrieves structured

urllib.request.urlopen() is used
to open and read the contents
of the RSS feed URL

information and the feed

parsed = podcastparser.parse(rss_url, urllib.request.urlopen(rss_url))

description =
for 1 in range (len(parsed['episodes'])):
description = description + parsed['episodes'][i]['description’]

descriptions[parsed['title’']] = description

Descriptions from each
Dictionary with the podcast episode is concatenated to
homepage title as the key form a single string
description

For loop iterating over the
range of the number of
episodes in the RSS feed

[SC: 2) f)] is achieved by using the podcastparser library to parse each RSS feed URL to
concatenate the descriptions of each episode together.

= KeyBERT() #model using tone, word frequency, etc to find keywords from text
D)

kw_model.extract_keywords(descriptions[i

[SC: 2) f)ii)] & [SC: 3) a)] is achieved using KeyBERT which extracts podcast keywords
from descriptions from each homepage using the .extract_keywords() method in NLP.

Core NLP model: Word2Vector

def word_to_vector(keyword_pool):
each_keyword_vector_pool = []
if keyword_pool is None:
return [] # Return an empty list if keyword_pool is None
for each_keyword in keyword_pool:
try:
'model’ is ur pre-trained Word2Vec model
vector = each_keyword]
each_keyword_vector_pool.append(vector)
except KeyError:
Handle the case where the keyword is not in the model's vocabulary
continue

return each_keyword_vector_pool

[SC: 3) b)] is achieved using the Word2Vec model from the Stanford GloVe project. ['%
Using a pre-existing unsupervised learning algorithm from a large corpus to create word
vectors is much more efficient than training my own, optimising the backend functionality of
my program.

centroid 2 = pre _centroid arr.mean(axis=0)
distance = np.sqrt(sum((pre centroid arr[@]-centroid 2)*%2))

+np.sqrt(sum((pre centroid arr[1]-centroid 2)**2))
+np.sqrt(sum((pre_centroid arr[2]-centroid 2)**2))
avg distance = distance/3

To achieve [SC: 3) b) ii)], the centroid is calculated from the mean of all the keyword vector
pools.Calculating the mean distance of each keyword vector pool to the centroid, the
function can determine the degree of input relevance.

C2 min_max _normalisation(C dis):
#normalis on t , the ~ the mo

return 1-((C_dis-C2 min)/(C2 max-C2 _min))

cl relevance,c2 relevance = €1 min_max_normalisation(distancel),
C2_min_max_normalisation(distance2)

final centroid = c2.reshape(308)

#matchi ntroid or with list of similar words
centroid_inputl = model.similar_by vector(final_centroid)
centroid inputl = np.array(centroid inputi)

Relevance is determined by min-max normalisation, ensuring a consistent scale expressed
as a percentage.

Our hypothesis test confirmed the correlation between centroid distance and input relevance
and thus confidence in recommendation. Therefore, using the Gensim .similar_by_vector
function), the closest recommended keyword can be determined from euclidean distance
to the centroid vector, thus achieving [SC: 3) b) iii)].

Use of Flask to render HTML templates

Only runs flask application
if python script is executed
as main programme

Sets up Flask web
framework

if __name__ %= '__main__"':

app = Flask(__name__)

app.secret_key = "super se

@app.route('/")
def form():
| return render_template('farm.html') #renders

By using a secret key, Flask
Decorator used to safeguards user sessions,
define route for the data, and forms

root URL path (/)

Returns HTML
template when user
accessed root URL

return render_template('result.html’,c2_relevance=c2_relevance,

‘ ‘ ‘ ‘ ‘ ‘ similar_word=similar_word, search_url=search_url)

render_template() function passes keyword arguments to HTML template to generate
dynamic content, achieving [SC: 5) a)]. This method also follows separation of concerns
such that application logic in python is separated from HTML presentation, enhancing
maintainability and readability.

Fetch user input

Flask technique used to Decorator that defines a new
access and retrieve data route ‘finput_validation for
submitted from HTML form handling POST request

Unpack form data
into three variables

@app.route('/input_validation', methods
def input_validation():
form_data = request.form #request input data from form

input_1, input_2, input_3 = form_data['Inputl'],form_data['Input2'],form_data['Input3']
is_redirect, error_msg = check_user_input(input_1,input_2,input_3)
if is_redirect == False:

session['user_input'] = [input_1, input_2, input_3] #session: datalog for indivi

Allows data to be fetched and stored
across multiple HTTP requests for
same user; acts as a dictionary

[SC: 1) c) d)] is achieved using Flask '"? to define routes where input data can be validated
using check_user_input() function.

Use of CSS and HTML templates

@import url('http nts.googleapis.com/css2?family=Poppins&display=swap');

html {
‘ height: 1ee%;
}

body {
margin-top:5rem;
font-family: 'Poppins', sans-serif;
background: linear-gradient([d#141e3e, [O#243bs55);

main.css specifies features like background and font colours. ['*]

head
link rel="stylesheet" href="static/form_display.css"

link rel="stylesheet" href="static/button.css"
link rel="stylesheet" href="static/main.css"

head
By using external CSS files linked in the <head> section, HTML content can be separated
from CSS styles; if | alter the style | won't alter the content of the webpage, achieving [SC:
1) a) b)]. This type of modularity is also implemented by separating each HTML page and
connecting them via Flask as shown in main.py. Use of separated functions means that they
can be accessed from different python files, extending usage for different applications.

Data table creation and visualisation

fetchall() returns a list of
tuple records containing user
input and its keywords and
stores in records

dict(record) for record in records]

[dict(user_input=record[@], keywords=record[1]) for record in records]

vork with the data in a more

Goes through each
record of tuple data in
the list

dict() converts the tuple
elements into a dictionary

with user_input as the key
and keywords as the value

To achieve [SC: 5) b)], data from database is first converted into a dictionary.

Grid.js library creates interactive tables with specific parameters: '

script src="https://unpkg.com/gridjs/dist/gridjs.umd.js" script

Rendering and creating a grid using
the Grid.js library by setting
parameters for the grid

userData =

new gridjs.Grid({
columns: [

{ id:

{ id:

userData,

'user_input', name:

keywords ',

Defines the columns of the
grid where the ‘id’ property
specifies an identifier for each
column

Use of jinja to receive keywords
passed from .render_template() in

json format

previous_inputs() and storing it as a

'Keywords'

}s

name:

‘User Input’

{{ keywords | tojson | safe }};

}s

The data source for the grid uses
userData which is a list of dictionaries

stored in keywords

An interactive gridjs table is created with defined columns and corresponding data.

search is an object that
defines how search
functionality works

selector is a property of
search taking in three
parameters defining
which cells in the grid
should be searchable

The arrow
function defines
the following
function linked to
the selector

.includes() checks if
cellindex is 0 or 1,
restricting search to
either the first or second
column within grid

search: {
selector:

s

sort: true,

(cell,

pagination: true,
}).render(document.getElementById('database’));

Other parameters like sort and
pagination are defined as true to
allow the functionalities to be
afforded

.getElementByld() renders the
grid js table in the HTML
document where the identifier is
‘database’

rowIndex, cellIndex) => [@, 1].includes(cellIndex) ? cell :

If cell not in these two
columns, return null to the
selector

Lastly, further functionalities like searching and sorting are granted using Grid.js library, thus
conveniently rendering professional data tables, achieving [SC: 5) b)]. The external library
greatly simplifies creating interactive tables. The configurability also allows the developer to
personalise the appearance and table behaviour to suit project aim.

Data table query

Element within the class
.addEventListener() listens for a ‘. gridjs-search-input’ is selected
‘keyup’ event that is triggered when a where user search queries are
key on keyboard is pressed stored

nst searchButton_1 = document.querySelector('.gridjs-search-input');

searchButton_1.addEventListener('keyup', function(event) {
if (event.key === 'Enter') {

getUserInputOnSearch();

If the key pressed is the enter
key then a function is called

Firstly, to achieve [SC: 4) b)], the programme must ‘listen’ for user input.

/ Function to perform a POST request when Enter
function getUserInputOnSearch()

var user_query = document.querySelector('.gridjs-search-input');

var user_guery = user_query.value;

Next, user_query stores the query element for subsequent POST requests.

navigate() contains windows.location.href
which redirects the user to a route within
main.py defined using Flask

navigate()

window.location.href = 'embedding_projector’;

fetch('/query_user_input’, {

method: 'POST’,

headers: {

'Contéent-Type': 'application/json',

}s

body: JSON.stringify({ user_query: user_query }),
}) .then(navigate);

- v Converts the Js
fetch() initiates a post headers specifies the object user_que
request to the specified format type of the . user_guery

) into a JSON
route with parameters content as JSON .

formatted string

.then() handler
would call
navigate() after post
request is made

The navigate() {....}.then(navigate), employs asynchronous programming that initiates a
dability. If the POST request fails, it

network request before further operations, enhancing rea
can be debugged separately from the navigation function

.get_json() function used
to deserialise json data
from POST request

Check if the predefined key
is in the json file

request.get_json()
in request_data:
search_input = request_data["’
conn = sqlite3.connect('KEYWOR
cur = conn.cursor()
cur.execute("SELECT k rds FROM KEYWORD WHERE user_input

query_keywords = cur.fetchone()
query_keywords = query_keywords[@]

query_keywords = query_keywords.split(";")

Dictionary format
pointing to key in
fetching keywords

>', (search_input,))

.split() used to Accessing the first Used fo fetch a single
. - row of data from
create list of element containing
. database cursor
keywords by string of keywords

splitting the string at
each comma

Use of SQL query to find
the corresponding
keywords matching to the
user_input that is equal to
search_input

Lastly, [SC: 4) b)] is achieved by fetching the user input from the POST request and
mapping it to its keywords from the database.

if query_keywords is not None:

session["keyword'] = query_keywords

session['searchQuery’'] = search_input
session['route'] = 1

#keywordVector = word_to_vector(query_keywords)

return "success"

Using sessions with specific keys in Flask allows storage and access across HTTP
requests, so data can be accessed in different Flask routes, promoting organisation and
continuity between pages and functions.

word cloud creation

Jinja flash() function allows
search_input to be
accessed as a variable via
Jinja in an HTML document

if session['route’'] == 1:
search_input session["searchQuery’]
search_input "'.join(str(search_input))

flash(search_input)

route = 1

To achieve [SC: 5) a)], the session is a flag that determines if 'embedding_projector.html’ is
called from this route as the HTML document renders different content based on the
originating route.

Jinja2 conditional get_flashed_messages|()
statement used to retrieve flash
messages

{% if route == 1 %}

{% with message = get_flashed_messages() %}
a href="http://127.0.0.1:5000" class="home-button">Home</a

Thus, Jinja2 "9is used to display the flashed data in the HTML document.

script sre="https://cdn.jsdelivr.net/npm/TagCloud@2.2.8/dist/TagCloud.min.js" script

To achieve either [SC: 5) a)] or [SC: 5) c)], TagCloud Js library "®'takes a list of words and
displays an animated word cloud, allowing users to quickly grasp the important keywords
relevant to their search input.

JSON.parse() parses the

‘.contents’ specifies JSON-formatted string and

where the cloud will converts it to a Js object.
be rendered

TagCloud() initialises the
TagCloud library to create a
word cloud visualisation.

st myTags JSON.parse('{{ keywordsForCloud
tagCloud TagCloud('.contents', myTags, {
radius: 270

maxSpeed:
initSpeed:
direction:
left: e,

keep:

myTags is the Js
The rest of the parameters are to customise the object containing the

visualisation and interaction of the word cloud. word cloud data

Input autocomplete function

script src="https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.js"
script

script src="https://ajax.googleapis.com/ajax/libs/jqueryui/1.8.16/jquery-ui.js"

script
To achieve [SC: 1) d) ii)], the first script loads the jQuery library ' making it easy to
manipulate HTML document objects. The second script is used to create an interactive
autocomplete box.

script

$(function() {
var availableTagsl = [
{% for input_record in input_records %}

.1] OIS WO TP, ey

~{{input record
{E endfor %l

i

$("#tagsl").autocomplete({
source: availableTagsl

Use of $ defines a function in javascript that works with DOM (document object model)
elements. .autocomplete() calls the variable availableTags1 and, using Jinja2, flashes the
input records corresponding to the user input defined by the identifier “tags1”, thus achieving
[SC: 1) d)ii)]

Word count: 972

Works Cited

DB Browser for SQLite, https://sqlitebrowser.org/. Accessed 1 July 2023.
Jinja — Jinja Documentation (3.1.x), https://jinja.palletsprojects.com/en/3.1.x/.

Accessed 15 November 2023.

Breuss, Martin. “Beautiful Soup: Build a Web Scraper With Python — Real Python.”
Real Python, https://realpython.com/beautiful-soup-web-scraper-python/.
Accessed 5 July 2023.

“[Flask# 2] Flask Session {# A A& #8.” Max{T#§ 55, 23 September 2020,

https://www.maxlist.xyz/2019/06/29/flask-session/. Accessed 10 June 2023.

“GloVe: Global Vectors for Word Representation.” Stanford NLP Group,

https://nlp.stanford.edu/projects/glove/. Accessed 20 July 2023.

Grootendorst, Maarten. “KeyBERT - KeyBERT.” Maarten Grootendorst,
https://maartengr.github.io/KeyBERT/api/keybert.html#keybert._model. Key

BERT.extract_embeddings. Accessed 25 June 2023.

“How to style buttons with CSS.” W3docs,
https://www.w3docs.com/snippets/css/how-to-style-buttons-with-css.html.

Accessed 10 September 2023.

Jain, Sandeep. “NLP Gensim Tutorial - Complete Guide For Beginners.”
GeeksforGeeks, 7 November 2022,
https://www.geeksforgeeks.org/nlp-gensim-tutorial-complete-guide-for-begin

ners/. Accessed 2 August 2023.

Jain, Sandeep. “Python | Lemmatization with NLTK.” GeeksforGeeks, 3 January
2023, https://www.geeksforgeeks.org/python-lemmatization-with-nltk/.
Accessed 18 June 2023.

“iIQuery Tutorial.” W3Schools, https://lwww.w3schools.com/jquery/default.asp.

Accessed 15 December 2023.

m, jose. “#..” YouTube, 30 August 2022,
https://github.com/miguelgrinberg/flask-gridjs/blob/main/templates/ajax_tabl

e.html. Accessed 10 November 2023.

Min, Cong. “Animated text sphere in JavaScript using TagCloud.js.” DEV
Community, 2 August 2021,
https://dev.to/asmitbm/animated-text-sphere-in-javascript-using-tagcloud-js-

1p72. Accessed 4 December 2023.

Perl, Thomas. “podcastparser - PyPl.” PyPI, https://pypi.org/project/podcastparser/.

Accessed 15 July 2023.

“Python#f B 5% 51 : Flask{# FA %50 (Z)- ¥ EHTMLFNICSS.” Yanwei Liu, 5 April 2019,
https://lyanwei-liu.medium.com/python%E7%B6%B2%E9%A0%81%E8%A8
%AD%E8%A8%88-flask%E4%BD%BF %E7%94%A8%E7%AD%86%E8%

A8%98-%E4%BA%8C-89549f4986de. Accessed 10 August 2023.

“Python Requests post Method.” W3Schools,
https://www.w3schools.com/python/ref_requests_post.asp. Accessed 4

June 2023.

“Python Requests post Method.” W3Schools,
https://www.w3schools.com/python/ref_requests_post.asp. Accessed 10

July 2023.

“Python set() Function.” W3Schools,
https://www.w3schools.com/python/ref_func_set.asp. Accessed 7 July

2023.

