
Criterion B: Design Stage

01) Page Overview:

The functionalities will be separated into the following pages.

No. Page HTML template URL Description

1 Home page main.html / Main page where user
can find all
functionalities

2 Loading page Loading.html /loading A loading page with
spinner running as
backend processing of
inputs is done

3 Previous Inputs page previous_inputs.html /previous_inputs Display of past input
records

4 Podcast
Recommendation page

result.html /result Displays the
recommended podcast
and other results
including further
functionalities

5 Word Cloud page word_cloud.html /word_cloud Displays an animated
word cloud of
associated keywords
relating to user search
from previous
searches page

02: General Preview of the Graphic User Interface(GUI):

Clicking on each of the rectangles indicated by the blue circles would link to other pages within the website.
Below, we will go through each section in detail, each of which has been approved as well.

Pages and Features Wireframe

1.

- Input triggers several function:
- Check format
- Input validation
- Loading screen
- Process input (web-scraping
and NLP)

- Layout:
- Flask form

2.

- Loading screen while input is
being processed

3.

- Search section filters results in
data table

- Submitting search query leads to
Word Cloud page

- Columns of data table can be
sorted alphabetically

03: File Structure

The following table denotes the file structure of the project, as well as the purpose of each folder and file.
Folder names are marked in bold.

4.
- Word Cloud

5.

- Info on recommended podcast
- Wordcloud
- Link to podcast

Podcast_finder Main project folder

| main.py Python file containing all the main functions and is called to
launch the website

| | etl.py Stands for “extract, transform, load”: used for functionalities
related to web crawling, interaction with the BERT model, and
loading of processed data to SQL database

| | nlp.py Python file used for functionalities related to NLP processes

like vectorisation, and centroid-clustering to find the most
relevant keyword

| | -------- Data

| | | KEYWORD_MAP.db SQLite database

| | | Stopwords.pickle Pickle file containing stopwords

| | | glove.6B.300d.txt Text file containing pre-trained vector representations for
words

| | | df_result.pickle Pickle file containing pre-trained/pre-processed data from
various user inputs

| | -------- Static

| | | main.css Style sheet for all HTML pages.

| | | | form_display.css Style sheet for form.html

| | | | loading.css Style sheet for loading.html

| | | | button.css Style sheet for the home button

| | | | result_style.css Style sheet for result.html

| | | |
embedding_projector.css

Style sheet for embedding_projector.html

| | | |
https://unpkg.com/gridjs/dist/theme/
mermaid.min.css

Online Style sheet for displaying database

| | | | wordcloud.js JavaScript file for animating word cloud

| | -------- Templates

| | | form.html Template for homepage form

| | | loading.html Template for loading page

| | | result.html Template for results page

| | | previous_inputs.html Template for displaying database of previous inputs and
relevant data

| | | embedding_projector.html Template for displaying word cloud

Code Model

The below diagram follows the MVC (model, view, controller) framework for building web applications. The
communication within the different logical components of the application is clearly set out:

Python Libraries Used

Python Library Version Purpose

Beautifulsoup4 4.12.2 Easy way to to perform web scraping for requested HTML
and XML files

Pandas 2.1.1 Module contains many functions for manipulation of data
structures which is used when fetching and updating data
from the SQL database

Podcastparser 0.6.10 Easy tool for parsing podcast RSS feeds to search through,
fetch and process data

Urllib3 2.0.5 A powerful, user-friendly HTTP client for Python used in
requesting data from HTML and XML files

KeyBert 0.7.0 A pretrained model that uses tone, word frequency, and
other extraction techniques to create keywords most similar
to podcast descriptions

Db-sqlite3 0.0.1 Allows easy access to embedded SQL database engine and
reads and writes data to the disk file

Numpy 1.26.0 Allows efficient methods in operating with
multi-dimensional arrays

Gensim 4.3.2 Allows access to large pre-trained word to vector models
that can be used to represent keywords as semantic

vectors

Python-math 0.0.1 Used to perform mathematical calculations efficiently like
.mean() and also utilise functions like math.random for
pre-training centroid data

Regex 2023.8.8 Used to specify a search pattern in validating the syntax of
keywords from each podcast

Requests 2.31.0 Allows easy sending of HTTP requests to access data from
websites

Flask 2.3.3 Allows a simple way to efficiently build web applications
including techniques like routing between different URLs,
rendering HTML templates, and easy fetching and handling
of request and post data.

NLTK 3.8.1 (Natural Language Toolkit) allows access to specific tools
such as tokenisation and lemmatisation in language
processing; this is useful for validating the user inputs in
homepage form

Wordnet 0.0.1b2 Used in conjunction with NLTK library for finding word
meanings and lemmatisation

04: Program, GUI and Input Flow – User & Client Perspective
The following materials used to explain the program basics from the client/user perspective.

User Flowchart

1. Data format validation:

Component Format Reason for format

1) Homepage user
input

string Straightforward format to
easily process user inputs.
The user can type any
input as long as a result
comes up through a
connection with Google
Podcast API. This is
considered the most
efficient form of validation
for this specific input.

2) Previous searches
page user input

string Entered string can be
easily compared with
database records of
previous user input.

For Homepage user input:

Subsequent functions performing these validation checks will be explored in Criteria C.

Extreme Cases Processed input/response

‘Sdkjfljddj’ Error: no podcast result returned
(returns to homepage automatically)

‘Bless’ ‘bless’

‘Governments’ ‘government’

‘Government’ ‘government’

‘the’ Error: input is empty (returns to
homepage automatically)

05: Developer Perspective (backend):

The hierarchy chart shows the main functionalities of the program split into the frontend and backend
functionalities that interact with the SQL database.

05.1) backend functionalities flowchart

From the homepage, when the user enters 3 words, input validation is performed through NLTK lemmatization
and connection to Google Podcast API. If results are returned then inputs are valid. After lemmatization, if the
inputs are stored in the database, then their corresponding keywords are fetched to be directly processed by
NLP vectorisation using the Word2Vec model trained by GloVe. A centroid is created and confidence of
recommendation is calculated from distance of keywords to the centroid. The results are returned and
displayed in the podcast recommendation page.

Otherwise, if inputs are not stored in the database, web-scraping process is initiated such that podcast episode
URLs are scraped. From these URLs, the homepage URLs are accessed using BeautifulSoup. Connection to an
API allows the programme to get the RSS feeds which can then be used to append all the podcast episode
descriptions into a nested list. These descriptions are processed using a pre-trained keyBERT model to find
keywords from each podcast. The keywords are validated and the NLP process is repeated to return centroid
and relevance score.

05.2) Main Program Functions:
This mainly concerns functions operating in the backend

Function Colour Code Purpose

main_input_processing() Fetches the keywords generated from
KeywordExtractor() function and processes them by
eliminating stop words as well as changing plural
words to their singular form.

KeywordExtractor() Generates the keywords based on user input by
either going through a web-scraping process and
using KeyBERT model to extract keywords based
on podcast descriptions or by fetching
corresponding keywords to inputs already stored in
a SQL database.

create_recommendation() Generates a keyword from finding the most similar
word based on the closest vector to the centroid.
Moreover, it also calculates the relevancy of the
centroid to podcast keywords using normalisation
with pre-trained data.

get_centroid_2() calculates centroid based on the average of all the
vectorised keywords from each podcast homepage
and calculates the total distance of all the keywords
to the centroid

query_user_input() Fetches user query data from previous search page
and finds corresponding keywords to display word
cloud

05.3) Variables:

To accommodate the outputs of these major functions, the main variables I must create for the program
include:

Variable Name Variable Type Purpose

user_inputs List Holds the 3 user inputs in homepage form

podcast_urls List Holds the URLs of each podcast item

homepage_urls List Holds the homepage URLs from each podcast item

keyword_pool List (2D) List of list holding the keywords from each input

rss_url String Holds the link to the RSS feed of accessed homepage URL

parsed Dictionary Holds the parsed podcast RSS feed URL

descriptions Dictionary For each homepage title stored as a key, it would hold the
descriptions concatenated together from each podcast
episode of the parsed RSS feed of homepage URLs

total_keywords List (2D) List of List storing the keywords generated from the
descriptions of each podcast homepage

clean_keyword_pool List (2D) Holds the keywords from each podcast homepage after the
elimination of stopwords and the changing of plural words to
its singular form

centroid_2 NDArray (1X300) array storing the vector data from the mean of the
vectors for all keywords

avg_distance Float Average distance of all the keyword vectors in space to the
centroid

c2_relevance Float Relevancy of centroid to podcast keywords calculated from
normalisation with pre-trained data

centroid_input1 NDArray Contains array of most similar words by vector to the centroid

similar_word String Most relevant keyword generated based on the centroid
vector

query_keywords List Contains the corresponding keywords to the input that the
user queries in the previous search page

05.4) Flowcharts for main functions
main_input_processing()

KeywordExtractor()

create_recommendation()

get_centroid_2()

query_user_input()

06) Database:

The website uses a SQLite database, “KEYWORD_MAP.db” in the project folder. It stores past user inputs,
allowing easy and efficient access to corresponding keywords. This eliminates the more tedious and
time-consuming web-scraping + NLP process to gather keywords.

Why not use a dataframe instead of a database?

Pandas dataframes have limited memory capacity; Sql database provides large storage and more efficient
retrieval with more advanced querying techniques and optimised indexing. However, the simplicity of the
database might mean there won’t be a significant difference.

Table - KEYWORD

Column Type Purpose

user_input String Word user inputted

keywords String Corresponding keywords
extracted from related
podcasts

The following flowchart outlines how the database is linked to the website and how data insertion occurs
to the database:

07) Hypothesis Testing:

- To check the statistical significance of test results:

Hypothesis: vector distances between the keyword pool vectors and the centroid calculated
through certain algorithms are smaller than the vector distances between random scatter of data
points and the centroid.

The p-value calculated will suggest if this assumption is correct, meaning that centroid calculation
is a good measure of the statistical relevance of the keyword represented by that centroid vector.

Assumption check:
- To decide whether to use parametric or non-parametric version of test using requirements below:

- Observations in each sample are independent and identically distributed
- Observations in each sample are normally distributed
- Observations in each sample have the same variance

Select test:

Definitions:
- Alpha (a) = 0.05
- Centroid distance for similar inputs = S
- Centroid distance for random inputs = R
- H0 (Null hypothesis): S<R
- H1 (Alternative hypothesis): S>=R
- Distance to Centroid 1: calculated using the mean distance of all input keywords to centroid
- Distance to Centroid 2: calculated using the mean distance of the centroid to the three centroids created
from keyword pool of each user input

Results:
- Data is unpaired because the input obtained and performed on are different and random.

From fig 1 and fig 2, for both centroid 1 and centroid 2, the euclidean difference of the distances between
similar and dissimilar words follow a normal distribution, suggesting that there is a strong correlation between
similarity of inputs and the distance to both centroid 1 and 2. Thus, euler distance can be used as a measure of
the similarity between user inputs and hence determine the confidence level of the recommended podcast to
the user.

08) Developer Test Plan

Test # Success Criteria Purpose Test Action Expected Result

1 1) b) Website
successfully runs,
can be accessed
on all major
browsers

Execute “main.py” to
initiate website on
local system
Access
“http://localhost:5000/”
on
Google Chrome,
Microsoft Edge, Firefox

Website can be accessed at
“http://localhost:5000/” on all
browsers

2 1) d) i) Corresponding
keywords from
user input can be
fetched from SQL
database

User inputs a word that is
already in the database

Database returns corresponding
keywords of said user input

3 1) c) and d) Form data is
posted when
submit button is
pressed

Input 3 words into the
search boxes in form and
press the submit button
or press ‘enter’

Upon pressing button or ‘enter’
key, website redirects to loading
page suggesting that user inputs
have been sent for processing
using the POST method

4 1) d) (iii) (2) Website redirects
user back to
home page when
user input has no
search result

Input random letters into
the search boxes in the
homepage form and
press submit or press
‘enter’ key

Upon pressing submit, the
website should redirect the user
back to the homepage,
suggesting that the user input
does not have a corresponding
search result when connected to
the Google Podcast API.

5 1) d) (iii) (1) Website redirects
user back to
home page when
user input has no
search result

Input singular and plural
words into the search
boxes in the homepage
form and press submit or
press ‘enter’ key

The keywords returned for both
user inputs should be the same
from the backend point of view.

5 1) c) & 5) b) User input and
corresponding
keywords can be
added to SQL
database

Enter user inputs into
form in the homepage

User input and corresponding
keywords are updated in the
database which can be viewed
upon search in the previous
searches page

6 2) h) (Error)Podcast
homepage URL
RSS feed not
found

Enter a word that returns
a podcast homepage
where its RSS feed
cannot be accessed

Outputs a message stating that
there is an error parsing the RSS
feed

7 2) g) 404 (Page not
found) error
handling

Input a URL of a page
which does not exist

Redirects user to an error 404
page not found page

8 1) d) iii) (1) Stopwords are
eliminated and
plural words are
changed to its
singular form
from list of
keywords for
each input

Print out keywords
before and after
processing to check if
stopwords and plural
words have been cleaned

Expect that stopwords are
eliminated and plural words are
changed to its singular form in
keyword list

9 5) d) Home button
routes to
homepage of
website

Press home button Upon pressing Home button,
website directs user to homepage
of website

10 1) b) User-friendly GUI
(minimalistic,
easy to
understand and
easy to use)

Homepage easily
naturally directs user to
input in form, otherwise,
user presses button that
routes to previous_inputs
page

User should have no problems
using the product

11 1) a) Requires
Minimum Input

Input only 3 words into
search boxes in form

Program should process inputs
and redirect user to results page
after loading is complete

12 1) c) Correctly reads
user inputs into a
session after
request for inputs

Input 3 words into form
on homepage

Print out the datalog from the
session to see if it matches what
user has inputted

13 1) c) Directs to results
page after
loading is
complete

Input 3 words into form
on homepage

Directs to results page after
loading is complete and displays
processed data and embedded
frame from Google Podcast API

14 5) a) Embedded frame
is rendered and
shows
established
connection to
Google Podcast
API

Input 3 words into form
on homepage embedded frame is connected to

Google Podcast website

15 5) a) Embedded frame
directs correctly
to URL of
recommended
search keyword

Check if recommended
keyword from processed
data in results page
match the search request
for the URL in the
embedded frame

Recommended keyword matches
search request within URl of
embedded frame

16 5) a) Results page
contains
processed data
that correctly
shows user
inputs, relevance

Enter the same inputs
twice and check if the
processed and rendered
data on results page are
shown the same

All elements both times are the
same and user inputs match the
user inputs shown on the results
webpage

of recommended
keyword, the
recommended
keyword and a
word cloud

17 5) b) Previous input
page correctly
renders a data
table with record
of previous user
inputs and
corresponding
keywords

Click on button to direct
to Previous Input page

Upon clicking the button, the user
is directed to a new page with a
displayed data table of user
inputs and corresponding
keywords.

18 5) c) Previous input
page directs
correctly to the
wordcloud page
when user enters
input into search
box.

Enter a string into the
search box

Upon submitting the user input,
the page redirects to another
page with an interactive word
cloud of corresponding keywords

19 5 d) Each page
contains the
button that
redirects back to
the homepage

Click on each page of the
website.

Upon clicking the button that
directs to each page, the
homepage button still appears for
each page.

20 4) a) Upon clicking the
header of either
the inputs or the
keywords column,
it will sort the
rows of the
pressed column
alphabetically.

Click on either column The rows of that column are
sorted alphabetically.

21 4) a) Upon clicking the
same header of a
specific column
again, it will
reverse the sorted
order of the
column rows.

Click on the same column
of the data table again.

The rows of that column are
displayed in reversed order.

22 3) a) Keywords are
created and
stored in the
database for a
specific user input

Enter a new input in the
input box of the
homepage, and wait for it
to be processed. Then, go
to the Previous inputs
page and enter the word
you entered, checking if
corresponding keywords
are produced for that

Corresponding keywords for that
specific input is displayed in
datatable of the Previous inputs
page.

user input.

23 3) b) i) A high relevance
score should be
displayed for 3
similar user
inputs.

Enter 3 similar words into
the input box in the
homepage of the
website.

A high relevance score (>80%)
should be displayed in the
Podcast recommendation page.

24 3) b) i) A low relevance
score should be
displayed for 3
dissimilar user
inputs.

Enter 3 dissimilar words
into the input box in the
homepage of the
website.

A low relevance score (<50%)
should be displayed in the
Podcast recommendation page.

